ALGORITMA PEMBENTUKAN KUNCI UNTUK SISTEM KRIPTOGRAFI ELGAMAL ATAS GRUP MULTIPLIKATIF Zp*


Abstract: The ElGamal Cryptosystem is a public-key cryptosystem based on the discrete logarithm problem over multiplicative group modulo p\mathbb{Z}_p*, where p is a prime. This cryptosytem have two keys, the public key and the private key. This key-pair have four-tuple (p, \alpha , \beta ,a), where p is a prime, \alpha is a generator of \mathbb{Z}_p*, and  \beta = \alpha^a mod p. The public key is 3-tuple (p, \alpha , \beta) and used for encryption. The private key is a, and used for decryption.

The security of this cryptosystem is equal to the difficulty of the assosiate discrete logarithm problem for the cryptosystem. If we take a bigger prime, then the difficulty of discrete logarithm problem may increase, so the cryptosystem is more secure. In this paper, we present several algorithms for generating the public key and the private key of ElGamal Cryptosystem. The first algorithm is used to find a big prime and the second algorithm is used to find a generator of \mathbb{Z}_p*. To find a big prime, we take a primality test for a choosen integer to know that integer is prime or composite. To find a generator of \mathbb{Z}_p*, we take a test for a choosen integer.

Keywords: ElGamal cryptosystem, key-generation algorithm, public-key

(Makalah ini telah dipresentasikan pada Seminar Nasional Matematika dan Pendidikan Matematika, yang diselenggarakan oleh Universitas Muhammadiyah Malang, 30 Januari 2010)

ALGORITMA PEMBENTUKAN KUNCI UNTUK SISTEM KRIPTOGRAFI ELGAMAL ATAS GRUP MULTIPLIKATIF Zp*

Follow me at Twitter @uhaisnaini

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s